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Abstract. A widely used method for the approximate numerical simulation of the bulk behavior of particle
suspensions consists in filling the entire space with copies of a fundamental cell in which N particles are arranged
according to some probability distribution. Until now this method has only been used for suspensions that are
spatially uniform in the mean. The case of spatially non-uniform systems, on the other hand, has not been consid-
ered. Here the average velocity and pressure fields for such a non-uniform suspension of identical rigid spheres in
Stokes flow are calculated, and analytic solutions expressed in terms of multipole coefficients are presented. The
results match and extend others obtained by the authors in parallel work using a completely different approach. In
particular, the definition of a quantity to be identified with the mixture pressure is fully supported by the present
results. An explicit result for the structure of the viscous stress in the suspension is also found. It is shown that, for
spatially non-uniform systems, the stress contains a non-symmetric contribution analogous to a baroclinic source
of vorticity.

As a byproduct of the analysis, certain integrals of two periodic functions introduced by Hasimoto are calcu-
lated. These integrals would arise in similar problems, e.g. the electric field produced by electric multipoles in a
periodic cubic structure.
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1. Introduction

Suspensions of spheres in Stokes flow feature prominently among the most studied multiphase
disperse systems (see, e.g., [1–14]). In recent work in which direct numerical simulations
have been carried out, a large volume of the suspension is usually approximated by filling
the entire space with copies of a fundamental cell in which N identical rigid spheres are
randomly arranged (see, e.g., [15–18]). If the cell is large enough, the artificial periodicity
induced by this construction may be expected to have a negligible effect and the system
will approximate the bulk behavior of a suspension away from boundaries. The numerical
results can be averaged and, if necessary for better statistics, ensembles of such systems can
be generated, from which effective properties can be obtained.

Recently a method has been developed by which this approach – previously only applied to
spheres arranged according to a uniform probability distribution – can be extended to spatially
non-uniform probability distributions [16–20]. Non-uniform suspensions are, of course, of
great interest as they give rise to average quantities that are not spatially uniform and therefore
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have non-zero spatial derivatives.2 By using this fact and the techniques explained in [16–18],
it is possible to find, in a systematic way, closure relations for averaged equations to describe
the behavior of a suspension in a statistical sense.

It is these recent applications that motivate the present study in which ensemble averages
of the Stokes pressure and velocity fields are explicitly evaluated. The results offer several
elements of interest. In the first place, we find explicitly the structure of the stress tensor in
the suspension, and prove the existence of an antisymmetric component even in the absence
of external couples applied to the particles. This component can play an important role in the
stability of the system. Secondly, by a completely different route, we recover the definition
of mixture pressure proposed in [20] on the basis of a consideration of the transformation
properties of the averaged equations upon a gauge transformation of the microscopic pressure.
This finding strengthens the earlier derivation which, though somewhat unconventional, is
applicable to finite Reynolds numbers and non-Newtonian fluids as well. Finally, unlike those
of [16–18], the present results are exact to all orders in a/L, where a is the radius of the
spheres and L the side of the cube, and, again unlike the earlier work, their derivation does
not rely on a particular formulation of the average momentum equations for the phases.

As a final point of interest, we show how to evaluate volume integrals of general harmonic
and biharmonic functions that are periodic in the cube and regular outside the spheres. The
interest of this calculation lies in the fact that such integrals arise when these functions are
expanded in a Fourier series in the cube; thus, the methods developed here are applicable
beyond the specific application to Stokes flow that motivates their development.

2. Ensemble averages for a non-uniform system

Consider N identical spheres placed in a cubic volume V of side length L and immersed in a
viscous liquid3 (see Figure 1). We assume that the Reynolds number of the flow based on the
sphere’s radius a is so small that inertia is negligible and the Stokes equations apply. We also
assume that the entire space is filled with copies of the cube so that the disturbance fields due
to the presence of the spheres have the same periodicity as the cell structure.

Given a deterministic forcing agent, such as a force applied to the particles or an imposed
shear, at every instant, the behavior of the system is entirely determined by the position of the
sphere centers yα , α = 1, 2, . . . , N . Let P(N) ≡ P(y1, y2, . . . yN) denote the probability
density of the distribution of centers, normalized so that∫

dCN P (N) = N ! , (2.1)

in view of the spheres being identical. Here dCN = d3y1 d3y2 . . . d3yN , and, for each variable,
the integration ranges over the entire volume V. In general, P will also depend on time, but
the dependence on this variable is non-essential and is omitted throughout the present paper

For each configuration CN , we introduce an indicator function for the volume occupied by
the spheres:

2 It is remarkable that, in spite of the large number of papers devoted to disperse multiphase systems, only
very few explicitly address the spatially non-uniform situation [21–23].

3If the Fourier expansions that follow are generalized to include wave numbers of the reciprocal lattice, the
present results are also applicable to a fundamental cell in the shape of a parallelepiped with slanted sides.
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Figure 1. The system studied in this paper consists of a fundamental cell containing N spheres infinitely repeated
so as to fill the entire space. This construction is widely used in the literature for the numerical simulation of
macroscopically large (ideally infinite) volumes of a liquid-sphere suspension. For the example shown here the
sphere volume fraction is 30%.

χ(x;N) =
N∑
α=1

H (a − |x − yα|) , (2.2)

where H is the Heaviside distribution, and a the common radius of the spheres. Clearly
χ(x;N) = 1 if x is inside a sphere while χ(x;N) = 0 otherwise. The liquid volume fraction
βL(x), defined as the probability that the point x is in the liquid phase, is given by

βL(x) = 1

N !
∫

dCN P (N)
[
1 − χ(x;N)

]
, (2.3)

and the phase-ensemble average for the generic liquid field f (such as pressure, velocity, etc.)
is

βL(x) 〈f 〉(x) = 1

N !
∫

dCN P (N) (1 − χ) f (x;N) . (2.4)

If the field f is spatially periodic, all average quantities can be expanded in a Fourier series:

βL(x)〈f 〉(x) = f0 +
∑
k�=0

fk exp (−ik · x) , (2.5)

where the summation is over all wavenumbers that are compatible with the dimensions of the
cell (excluding k = 0), and

f0 = 1

V

∫
d3x βL(x)〈f 〉(x) , fk = 1

V

∫
d3x exp (ik · x) βL(x)〈f 〉(x) , (2.6)



278 M. Tanksley and A. Prosperetti

or, from (2.4),

f0 = 1

N !
∫

dCN P (N)

[
1

V

∫
d3x (1 − χ) f (x;N)

]
, (2.7)

fk = 1

N !
∫

dCN P (N)

[
1

V

∫
d3x (1 − χ) exp (ik · x) f (x;N)

]
. (2.8)

The presence of the liquid characteristic function (1 − χ) restricts the spatial integration
domain in (2.7) and (2.8) to the liquid region L consisting of the fundamental cell minus the
volumes σα of the spheres:

L = V −
N⋃
α=1

σα . (2.9)

Then, in order to calculate the Fourier coefficients f0, fk, we need to calculate integrals of the
form

F0(N) =
∫

L

d3x f (x;N) , (2.10)

Fk(N) =
∫

L

d3x exp (ik · x) f (x;N) . (2.11)

3. Particle averages

It will be shown in the following sections that, by use of Green’s identity, the volume integrals
(2.10) and (2.11) that arise in the present problem can be reduced to sums of the type

F0(N) =
N∑
α=1

J α
0 Fk(N) = 1

k2M

N∑
α=1

exp (ik · yα) I αk , (3.1)

where J α
0 , I αk are integrals over the surface of the α-th particle to be defined later, M is a

non-negative integer, and k = |k|; the Fourier coefficients (2.7) and (2.8) then take the form

f0 = 1

N !
∫

dCNP (N)
1

V

N∑
α=1

J α
0 , (3.2)

fk = 1

N !
∫

dCNP (N)
1

V

1

k2M

N∑
α=1

exp(ik · yα) I αk . (3.3)

In order to write the results that follow in a more compact form, it is useful to introduce a
different kind of average that we refer to as particle average.

Consider a generic quantity gα pertaining to each particle α as a whole, such as the center-
of-mass velocity, J α

0 , I αk , etc. We define the particle average of gα , denoted by an overbar,
according to
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n(x)g(x) = 1

N !
∫

dCNP (N)

[
N∑
α=1

δ(x − yα)gα(N)

]
, (3.4)

where

n(x) = 1

N !
∫

dCNP (N)

N∑
α=1

δ(x − yα) , (3.5)

is the local particle number density. In the present spatially periodic system, particle averages
can also be expanded in a Fourier series:

n(x)g(x) = (ng)0 +
∑
k�=0

(ng)k exp (−ik · x) , (3.6)

with

(ng)0 = 1

V

∫
d3xn(x)g(x) , (ng)k = 1

V

∫
d3x exp (ik · x) n(x)g(x) , (3.7)

or, from (3.4),

(ng)0 = 1

N !
∫

dCNP (N)
1

V

N∑
α=1

gα , (3.8)

(ng)k = 1

N !
∫

dCNP (N)
1

V

N∑
α=1

exp (ik · yα) gα . (3.9)

Upon comparing (3.2) with (3.8), we observe that f0 is just the k = 0 Fourier coefficient
of n times the particle average of J α , f0 = (nJ )0 and, from (3.3) and (3.9), we similarly see
that k2Mfk = (nI )k so that, from (2.5),

βL〈f 〉 = (nJ )0 + ∑
k�=0

k−2M (nI)k exp (−ik · x)

= (nJ )0 + (−∇2
)−M ∑

k�=0
(nI )k exp (−ik · x) ,

(3.10)

where (∇2)−1 is the formal inverse of the Laplacian in the space of functions periodic in the
cube. Noting that, according to the expansion (3.6),

n(x)I(x) = (nI )0 +
∑
k�=0

(nI )k exp (−ik · x) , (3.11)

we then have

βL〈f 〉 = (
nJ
)

0 + (−∇2)−M
[
nI − (

nI
)

0

]
. (3.1)

These formulae are useful to simplify the expression of the results that follow.

4. Velocity and pressure fields in a periodic suspension

Consider a fundamental cell consisting of a liquid-filled cube of side length L in which N

identical spherical rigid particles of radius a are randomly located (Fig. 1). We will solve the
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fluid mechanical problem of interest in this cell subject to periodicity boundary conditions at
the cell surfaces, a procedure which may equivalently be viewed as solving the problem in
the entire space filled with an infinite repetition of this cell. If the fundamental cell is large
enough, it may be expected that, in spite of the artificial spatial periodicity of the construction,
this arrangement would approximate the behavior of a macroscopic suspension away from
macroscopic boundaries and large enough to contain many particles.4 In this arrangement, the
centers of the spheres belong to a system of N infinite interpenetrating periodic lattices.

Each particle is subjected to an external force Fα, has a translational velocity wα, and an
angular velocity �α , with α = 1, 2, . . . , N . We further assume that the Reynolds number for
the relative particle-fluid motion is so small that the Stokes flow equations apply and that the
particle inertia is also negligible. Because of this last assumption, the imposed external force
Fα must be exactly balanced by the hydrodynamic force on the particle.

As in Mo and Sangani [8] we write the liquid velocity field as

u(x) = U∞(x) + v(x) , v(x) =
N∑
α=1

uα(x) , (4.1)

where U∞ is an imposed deterministic velocity field and uα is the disturbance induced by the
α-th particle; for simplicity, we only consider a uniform or linear imposed velocity:

U∞ = U0 + γ · x ; (4.2)

a note at the end of this section will indicate how more general forms for U∞ can be accounted
for. Since we only consider a situation in which inertia is unimportant, by a suitable choice
of the frame of reference we can eliminate the solid-body rotation corresponding to the anti-
symmetric part of the constant tensor γ which will, therefore, be assumed symmetric in the
following; incompressibility also requires γ to be traceless. By a similar argument we could
also take U0 = 0 but, for the sake of the transparency of some of the relations that follow,
we will not do so. The velocity U∞ defined in (4.2) diverges at infinity; this is an artifact of
the assumed infinite extent of the system with no physical consequences provided the particle
velocities are also adjusted in such a way that the disturbance velocity, u−U∞, is finite and the
same in each cell. Any conceptual difficulty may be avoided by focusing on the fundamental
cell in which the problem is solved subject to periodicity boundary conditions.

In their Equation (28) Mo and Sangani [8] give an expression for the pressure disturbance
corresponding to uα; after using their Equations (31) to (33) and (70), this may be written as

pα(x) = 1

V
x · Fα − µGα · ∇S1 (x − yα) , (4.3)

where µ is the liquid viscosity and the symbol Gα denotes a differential operator defined in
[8] that we do not need to write down explicitly. The function S1, a modified Green’s function
introduced by Hasimoto [28], satisfies

∇2S1(x) = 4π

[
1

V
−
∑
xK

δ(x − xK)

]
, (4.4)

4The use of a fundamental cell in which the problem of interest is solved subject to periodicity boundary
conditions is a standard device in molecular dynamics (see, e.g., [24, p. 92], and [25]), granular flow (see, e.g.,
[26]), composites (see, e.g., [15]), suspensions (see, e.g., [5, 27, 8]), and others.



Average pressure and velocity fields in Stokes flow 281

where the poles of the delta distribution are located at the centers of an infinite system of cubic
cells of side L; the summation is extended to all the cell centers xK including the origin. This
relation shows that S1 (x − yα) is singular at the center yα of the α-th particle.

We write the total pressure in the form

p(x) = P∞(x) + µq(x) , (4.5)

where, as suggested by (4.5),

q(x) = −
N∑
α=1

Gα · ∇S1(x − yα) ; (4.6)

by construction q and v satisfy the Stokes flow equation:

−∇q + ∇2v = 0 . (4.7)

In order to find the field P∞ we substitute p and u in the Stokes equation

−∇p + µ∇2u = −G , (4.8)

where G is the body force per unit volume acting on the continuous phase (e.g., G = ρg, with
ρ the continuous phase density, in the case of gravity); by use of (4.7) we then find, up to a
constant,

P∞ = x ·
(

1

V

N∑
α=1

Fα + G

)
, (4.9)

which agrees with Equation (73) of [8] given that, here, Fα is the imposed force on the particle
which is exactly balanced by the hydrodynamic force. As will be clear from Section 5.3, this
relation simply states that the static pressure gradient in a suspension exceeds that in the pure
suspending phase by the contribution of the forces acting on the particles.

In the following, we shall rely on local expansions of q and v in the neighborhood of the
α-th particle. For this purpose, we use the general solution of the Stokes flow equations given
by Lamb [29, article 336] (see also [30, pp. 83–93]) and write

q(yα + r) =
∞∑

−∞
qαn (r) , (4.10)

v(yα + r) =
∞∑

n=−∞

[
n + 3

2(n + 1)(2n + 3)
r2∇qαn − n

(n + 1)(2n + 3)
rqαn

+∇ × (rχα
n ) + ∇φα

n

]
,

(4.11)

where each one of the potentials qαn , φ
α
n , χ

α
n is a solid harmonic function of order n. For

example, for n ≥ 0, the qαn ’s are regular at r = 0 and are given by

qαn (r) =
( r
a

)n n∑
m=0

Pm
n (cos θ)

[
qrαnm cos(mϕ) + q̃rαnm sin(mϕ)

]
, (4.12)

while harmonics with a negative index are singular and are given by
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qα−n−1(r) =
(a
r

)n+1 n∑
m=0

Pm
n (cos θ)

[
qαnm cos(mϕ)+ q̃αnm sin(mϕ)

]
. (4.13)

Here (r, θ, ϕ) are spherical coordinates centered at yα and the Pm
n ’s are associated Legendre

functions. For n = −1 the first two terms of (4.11) cancel each other and φα
−1 gives the velocity

field of a simple source. For spheres of constant volume, as those considered here, one must
therefore have φα

−1 = 0.
The no-slip condition at the particle surface requires that

v(yα + r) + U∞(yα + r) = wα + �α × r , (4.14)

where �α is the angular velocity of particle α (with respect to that of the frame of reference,
cf. comment following Equation (4.2)); thus

v(yα + r) = wα
0 + �α × r − γ · r , (4.15)

with

wα
0 = wα − U0 − γ · yα . (4.16)

The periodicity of the problem requires that wα
0 be equal for the corresponding particles in

each cell, which makes wα larger and larger in the more distant cells; again this is an inconse-
quential artifact deriving from the infinite extent of the system and the assumed periodicity of
the disturbance flow induced by the particles.

By using (4.15) we can readily show that the following relations between the singular and
regular potentials hold:

qαn = (n+ 1)(2n + 3)

n

( r
a

)2n+1
[

1

2
qα−n−1 − 2n + 1

a2
φα

−n−1

]
, (4.17)

φα
n = n + 1

2n

( r
a

)2n+1
[
(2n + 3)φα

−n−1 − 2n + 1

2(2n − 1)
a2qα−n−1

]

+wα
0 · rδn1 − 1

2
r · γ · r δn2 ,

(4.18)

χα
n = −

( r
a

)2n+1
χα

−n−1 + �α · r δn1 . (4.19)

It is an immediate consequence of these relations that qα−1 = φα
−1 = 0, as expected, as particles

of constant volume cannot give a monopole contribution.
For an imposed flow more general than the linear one (4.2) considered here, these relations

would contain additional terms analogous in character to the last two in (4.18).

5. Fourier expansion of the pressure field

It is the objective of this section to obtain a Fourier representation of the form (2.5) for the
liquid pressure disturbance q. Since in this calculation we only use the fact that q is harmonic,
the results hold for an arbitrary periodic harmonic function.

We begin by considering integrals of the type (2.11) for non-zero wavenumbers k; the
method for the integral (2.10) then readily follows and is given later.
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5.1. NON-ZERO WAVE NUMBER

The integral (2.11) for q is

Qk =
∫

L

d3x exp (ik · x) q(x) , (5.1)

or, given that ∇2 exp(ik · x) = −k2 exp(ik · x),

Qk = − 1

k2

∫
L

d3x
[∇2 exp(ik · x)

]
q(x) . (5.2)

The expression (4.6) for q and the relation (4.4) satisfied by S1 show that q is harmonic away
from the particle centers, which do not belong to the integration domain L. Hence, after
an application of Green’s identity, we are left with an integral over the total boundary A of
the integration domain consisting of the surfaces of the N spheres and of the surface of the
fundamental cell:

Qk = 1

k2

∫
A

dA
[
q(x)∇ exp(ik · x) − exp(ik · x)∇q(x)

] · n , (5.3)

where the unit normal n points into the fluid. The contribution of the latter surface vanishes
by periodicity, and the end-result is an integral over the surfaces of the N spheres as in (3.1):

Qk =
N∑
α=1

exp(ik · yα)Lα
k , (5.4)

where

Lα
k = 1

k2

∫
r=a

dSαn · [q(yα + r)∇ exp(ik · r) − exp(ik · r)∇q(yα + r)
]
, (5.5)

and differentiation is with respect to the variable r.
By use of the formula

r · ∇qαn (r) = nqαn (r) , (5.6)

which immediately follows from (4.12) and (4.13), we can readily show that

Lα
k =

∞∑
n=−∞

1

a

(
k
∂

∂k
− n

)∫
r=a

dSα exp(ika cos θ)qαn (r) , (5.7)

where k = |k| and the angle θ is measured from the direction of k.
In view of the well-known relation

exp(ika cos θ) =
∞∑
n=0

in(2n + 1)jn(ka)Pn(cos θ) , (5.8)

and of the orthogonality of spherical harmonics, (5.7) becomes

Lα
k = 3v

ka

∞∑
l=0

il
[

2l + 1

ka
jl(ka)q

α
l0 − (

qrαl0 + qαl0
)
jl+1(ka)

]
. (5.9)
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Here v = 4
3πa

3 is the particle volume and it may be recalled that qrαn0 is a coefficient of the
expansion of the regular potential qαn in (4.12) and qαn0 is a coefficient of the expansion of the
singular potential qα−n−1 in (4.13).

The result (5.9) relies on a specific choice of the direction of the polar axis; in order to
rewrite it in a coordinate-independent form we observe that, as shown in Appendix A,

(ka)nqrαn0 = a2n

n!
[
(k · ∇)n qαn (r)

]
r=0 , (5.10)

(ka)nqαn0 = a2n

n!
{
(k · ∇)n

[( r
a

)2n+1
qα−n−1(r)

]}
r=0

, (5.11)

so that

Lα
k = v

∞∑
n=0

(−a2)n

n!
{
(−ik · ∇)n

[
−3jn+1(ka)

(ka)n+1

(
qαn +

( r
a

)2n+1
qα−n−1

)

+(2n + 1)
3jn(ka)

(ka)n+2

( r
a

)2n+1
qα−n−1

]}
r=0

.

(5.12)

5.2. HOMOGENEOUS INTEGRALS

In order to parallel the previous derivation we consider the equation

∇2q∗ = q . (5.13)

It can readily be shown that, if q is given by (4.10), a particular solution of this equation is

q∗(yα + r) =
∞∑

n=−∞

r2

4n + 6
qαn (r) , (5.14)

plus a harmonic function which, as will be clear shortly, can be assumed to be zero without
loss of generality. Upon writing the integrand in (2.10) as ∇2q∗, and applying the divergence
theorem as before, we are left with

Q0 = −
N∑
α=1

∫
r=a

dSαn · ∇q∗(yα + r) , (5.15)

where the gradient is with respect to the variable r; clearly, by the divergence theorem, the
undetermined harmonic function that could be added to q∗ would make no contribution to this
integral. Upon substitution of (5.14) and use of (5.6) one readily finds

Q0 = −v

N∑
α=1

[
qα0 − 3

2

r

a
qα−1

]
r=0

. (5.16)

Note that it is not possible to find this result simply by letting k → 0 in (5.12) as, for z → 0,
jn(z)/z

n → 1/(2n + 1)!! so that the second term in (5.12) is singular for n = 0, 1.

5.3. FINAL RESULT

The previous results can be written in the form suggested by (3.12). We start by defining



Average pressure and velocity fields in Stokes flow 285

Sn(−k2a2) = 3jn(ka)

(ka)n

= 3

(2n + 1)!!
[

1 − (ka)2

1!2(2n + 3)
+ (ka)4

2!22(2n + 3)(2n + 5)
+ · · ·

]
.

(5.17)

The notation explicitly indicates that a power series expansion of Sn only contains even powers
of ka, which enables us to introduce the formal differential operator Sn(a

2∇2). The first few
terms of the lower-order Sn’s are:

S0(a
2∇2) = 3

(
1 + a2

3! ∇
2 + a4

5! ∇
4 + · · ·

)
, (5.18)

S1(a
2∇2) = 1 + a2

10
∇2 + a4

280
∇4 + · · · , (5.19)

S2(a
2∇2) = 1

5

(
1 + a2

14
∇2 + a4

504
∇4 + · · ·

)
, (5.20)

S3(a
2∇2) = 1

35

(
1 + a2

18
∇2 + a4

792
∇4 + · · ·

)
. (5.21)

With this definition, as shown in Appendix A, it can be verified that (3.12) becomes

βL〈q〉(x) = −S1(a
2∇2) (nvq0)

−
∞∑
l=1

(−a2)l

l! Sl+1(a
2∇2)∇(l) ·

{
nv

[
∇(l)

(
ql +

( r
a

)2l+1
q−l−1

)]
r=0

}

−1

a

(
a2∇2

)−1
∞∑
l=1

(−1)l

l! (2l + 1)Sl(a
2∇2)∇(l) ·

{
nv
[∇(l)

(
r2l+1q−l−1

)]
r=0

}
.

(5.22)

In writing this relation we have used the fact that, noted after Equations (4.17) and (4.18), that
qα−1 = 0.

The final step in calculating the Fourier expansion of the pressure p consists in evaluating
the ensemble average of P∞ defined in (4.9). As shown in Appendix B the result is

〈P∞〉 = x ·
(

G + 1

V

∫
d3x n(x) F(x)

)
. (5.23)

The physical nature of this result becomes clearer considering the special case in which liquid
and particles are subjected only to gravity. In that case G = ρg, while F = F = v (ρD − ρ) g,
with ρD the disperse-phase density and we have

G + 1

V

∫
d3x n(x) F(x) =

[
ρ + Nv

V
(ρD − ρ)

]
g = ρ (V − Nv) + ρDNv

V
g , (5.24)

i.e., the total suspension weight per unit volume. The term 〈P∞〉 is thus an essentially hy-
drostatic contribution to the pressure field and is irrelevant for the analysis of the flow of the
suspension.
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6. The average velocity

We now turn to the calculation of the Fourier integrals (2.10) and (2.11) for the velocity.
Rather than using general formulae for biharmonic functions, which can be derived as done
before for harmonic functions and are presented in Appendix C, it proves more convenient to
give a derivation that uses the Stokes flow equation (4.7). As before, we consider the cases
k �= 0 and k = 0 separately.

6.1. NON-ZERO WAVE NUMBER

As in Section 5 we start with the identity

Vk =
∫

L

d3x exp(ik · x) v(x) = − 1

k2

∫
L

d3x
[∇2 exp(ik · x)

]
v(x) , (6.1)

and use the divergence theorem and the Stokes equation (4.7) to rewrite the last integral as

Vk = 1

k2

N∑
α=1

exp(ik · yα)
∫
r=a

dSα exp(ik · r)
[
− i

k2
(k · n)∇q

+ 1

k2
(n · ∇)∇q + i(k · n)v − (n · ∇)v

]
,

(6.2)

where the integral over the surface of the cell, which vanishes by periodicity as before, has
been omitted. Note that this expression is the sum of two terms of the form (3.1), namely

− 1

k4

N∑
α=1

exp(ik · yα)
∫
r=a

dSα exp(ik · r)
[
i(k · n)∇q − (n · ∇)∇q

]
, (6.3)

which is identical to (5.5) with q replaced by ∇q, and

1

k2

N∑
α=1

exp(ik · yα)
∫
r=a

dSα exp(ik · r) [i(k · n)v − (n · ∇)v] . (6.4)

In this second integral, the first term can readily be evaluated by use of the boundary condi-
tion (4.15) at the particle surface. For the evaluation of the second term in (6.4) we use the
representation (4.11) of v and the expressions (4.17) to (4.19). The method of calculation is
similar to the one used before in Section 5 and we omit the details. Some useful relations are
given in Appendix A. After combining all the results one finally finds

Vk = v

N∑
α=1

exp(ik · yα)
{
−3j1(ka)

(ka)
wα

0 + ia2 3j2(ka)

(ka)2
(k × �α + γ · k)

+
∞∑
n=1

[
− in

a(n − 1)! (2n + 1)
3jn(ka)

(ka)n+2
k × [

(k · ∇)n−1∇(r2n+1χα
−n−1)

]

− in−1

an! (2n + 1)(2n + 3)
3jn+1(ka)

(ka)n+3
(k2I − kk) · [(k · ∇)n−1∇(r2n+1φ∗α

−n−1)
]

+ ain−1

n!
3jn−1(ka)

(ka)n+3
(k2I − kk) · [(k · ∇)n−1∇(r2n+1qα−n−1)

]]}
(6.5)
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where, as in [8],

φ∗α
−n−1 = φα

−n−1 − a2

2(2n + 1)
qα−n−1 . (6.6)

It is understood that all the r-dependent terms in (6.5) are differentiated the indicated number
of times and then evaluated at r = 0.

6.2. HOMOGENEOUS PART

As in Section 5 we define v∗ such that

∇2v∗ = v , (6.7)

and apply the divergence theorem to the integral

V0 =
∫

L

d3xv(x) , (6.8)

to find

V0 = −
N∑
α=1

∫
r=a

dSα(n · ∇)v∗ . (6.9)

The usual periodicity argument has been invoked to remove the integral over the surface of
the cell. It can be shown from Lamb’s solution (4.11) for v that

v∗(yα + r) =
∞∑

n=−∞

1

2n + 3

{
r2

8(2n + 5)(n + 1)

[
(n + 5)r2∇qαn − 4nrqαn

]
+1

2
r2∇ × (rχα

n ) + 1

n+ 1

[
n+ 3

2
r2∇φα

n − nrφα
n

]}
,

(6.10)

plus an incompressible harmonic vector that can be assumed to be zero without loss of gener-
ality. Substituting this result in the expression (6.9) for V0 and proceeding as before, we find
that most terms drop out because of the orthogonality of surface harmonics. One is left with

V0 = −v

N∑
α=1

{
a2

10
∇
[
qα1 + 10

( r
a

)3
qα−2

]
+ ∇

[
φα

1 − 2
( r
a

)3
φα

−2

]}
r=0

, (6.11)

that checks with the expression of [8]. This result can be considerably simplified by use of
(4.17) and (4.18) to account for the no-slip condition at the surface of the sphere, with which
it reduces to:

V0 = −v

N∑
α=1

wα
0 . (6.12)

6.3. FINAL RESULT

The final result for the liquid velocity can be expressed in terms of particle averages as
described in Section 3 similarly to what was done at the end of Section 5; it is:
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βL〈v〉 = −S1(a
2∇2) (nvw0) − a2S2(a

2∇2)
[∇ × (

nv�
)− γ · ∇(nv)

]

+ (−∇2)−2 (
I∇2 − ∇∇) ·

∞∑
l=1

(−1)l

a3l! Sl−1(a
2∇2)∇(l−1) ·

(
nv∇(l)r2l+1q−l−1

)

− (−∇2)−1 (
I∇2 − ∇∇) ·

∞∑
l=1

(−1)l

a3l! (2l + 1)(2l + 3)Sl+1(a
2∇2)∇(l−1)

·
(
nv∇(l)r2l+1φ∗

−l−1

)

− (−∇2)−1
∞∑
l=1

(−1)l

a3(l − 1)!(2l + 1)Sl(a
2∇2)∇×

[
∇(l−1) ·

(
nv∇(l)r2l+1χ−l−1

)]
,

(6.13)

where, once again, the r-derivatives in the particle averages are evaluated at r = 0. Since
the first term in the expression (4.1) for the continuous-phase velocity is deterministic, it
remains unchanged upon averaging, so that the phase-ensemble average of the continuous-
phase velocity u is given by

〈u〉 = U∞ + 〈v〉 . (6.14)

7. Disperse-phase velocity

For the considerations of the following section it is important to point out a connection
between 〈u〉, the phase-ensemble average of the continuous-phase velocity, and the corre-
sponding quantity 〈uD〉 for the disperse phase. Note that, analogously to 〈u〉, 〈uD〉 represents
the average velocity field of the particle material, and it is therefore distinct, in principle, from
the average velocity of the particle centers w, as will be seen shortly.

The phase-ensemble average of the disperse-phase velocity uD is defined by a relation
similar to (2.4), namely

βD〈uD〉(x) = 1

N !
∫

dCNP (N)χ(x;N)uD(x;N) . (7.1)

Here βD is the disperse-phase volume fraction given by

βD(x) = 1

N !
∫

dCNP (N)χ(x;N) ; (7.2)

it is immediate to verify from (2.1) that βD + βL = 1; it can also be shown (see Appendix B)
that

βD = S1(a
2∇2) (nv) . (7.3)

The first term in the expansion of S1 is just 1 and therefore, for a spatially uniform suspension
for which all derivatives vanish, βD = nv. This relation is often assumed in the literature but,
as (7.3) shows, is an approximation only justified as a/L (where L is the macroscopic length
scale giving the order of magnitude of the derivatives of the averages) becomes small.

Since, as noted earlier after (4.16), the absolute velocity of particles in different cells is
different, 〈uD〉 is not periodic, while 〈uD〉− U∞ is. Hence we expand 〈uD〉 − U∞ in a Fourier
series:
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βD(x) (〈uD〉 − U∞) = u0 +
∑
k�=0

uk exp (−ik · x) , (7.4)

where

u0 = 1

V

∫
d3xβD(x)(〈uD〉 − U∞) , uk = 1

V

∫
d3x exp (ik · x) βD(x)(〈uD〉 − U∞) , (7.5)

or, from (7.1),

u0 = 1

N !
∫

dCNP (N)

[
1

V

∫
d3xχ (uD − U∞)

]
, (7.6)

uk = 1

N !
∫

dCNP (N)

[
1

V

∫
d3xχ exp (ik · x) (uD − U∞)

]
. (7.7)

The presence of the characteristic function χ restricts the spatial integration domain in
(7.6), (7.7) to the interior of the particles. With the assumption of rigid particles we have

uD(yα + r;N) − U∞(yα + r) = wα
0 + �α × r − γ · r , (7.8)

which enables one to calculate the spatial integrals in closed form. After manipulating the
result similarly to what was done before for q and v we find

βD〈uD〉 = S1(a
2∇2) (nvw) + a2S2(a

2∇2)
[∇ × (

nv�
)− γ · ∇(vn)

]
. (7.9)

For a spatially uniform suspension this relation reduces to 〈uD〉 = w, which is often assumed
in the multiphase flow literature. The general result (7.9) shows, however, that, in general,
the ensemble average velocity of the particle material differs from the average velocity of the
particle centers w.

8. Mixture velocity and pressure

The previous results can be connected to related ones obtained in a completely different way
in some recent papers [20, 16, 17]. It is important to establish this connection because those
results heavily relied on a particular form of the ensemble-averaged momentum equations
that, although motivated by a series of considerations, might still seem open to question. The
fact that identical results are found by the direct route followed here should allay any lingering
doubt as to their validity. In addition, it will be seen in Section 10 that the present results lead
to very interesting conclusions for the structure of the viscous stress in a spatially non-uniform
suspension.

In the first place, the first two terms of (6.13) for βL〈v〉 are recognized to be nothing other
than the average velocity of the particle material 〈uD〉 defined in Section 7 and given in (7.9).
If we define the volume flux, or mixture velocity, of the suspension by

um = βL〈u〉 + βD〈uD〉 , (8.1)

we find from (6.13)
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um = U∞ + a
(
a2∇2

)−2

{
(∇2I − ∇∇) ·

∞∑
l=1

(−1)l

l! Sl−1(a
2∇2)∇(l−1)

·
(
nv∇(l)(r2l+1q−l−1)

)

+∇2(∇2I − ∇∇) ·
∞∑
l=1

(−1)l

l! (2l + 1)(2l + 3)Sl+1(a
2∇2)∇(l−1)

·
(
nv∇(l)(r2l+1φ∗

−l−1)
)

+∇2
∞∑
l=1

(−1)l

(l − 1)! (2l + 1)Sl(a
2∇2)∇ ×

[
∇(l−1) ·

(
nv∇(l)(r2l+1χ−l−1)

)]}
.

(8.2)

It is readily shown from this relation that

∇ · um = 0 , (8.3)

as expected from the fact that both phases are incompressible.
The result (8.2) may be interpreted as stating that the quantity defined by (8.1) is computed

to have the expression given in the right-hand side of (8.2) for the present flow situation.
The important feature to which we draw the reader’s attention is the fact that the result for a
mixture quantity – in this case the mixture velocity – is found to contain averages of spherical
harmonics with a negative index only.

Turning now to the result for 〈p〉 given in (5.23), we find that, if we were to define

pm = βL〈p〉 + µS1(a
2∇2) (nvq0)

+µ

∞∑
l=1

(−a2)l

l! Sl+1(a
2∇2)∇(l) ·

(
nv

[
∇(l)

(
ql +

( r
a

)2l+1
q−l−1

)]
r=0

)
,

(8.4)

we would have from (5.23)

pm = 〈P∞〉 − µ

a3

(∇2)−1
∞∑
/=1

(−1)/

/! (2/ + 1)S/(a
2∇2)

×∇(/) ·
(
nv
[∇(/)

(
r2/+1q−/−1

)]
r=0

)
.

(8.5)

The structure of this relation is similar to that of (8.2) in that the right-hand side only contains
harmonics with a negative index. Just as (8.2) gives the result for the mixture quantity um

defined in (8.1), (8.5) is the result for the mixture quantity pm defined in (8.4). Here and in the
following section we will justify the suggestion that this quantity is to be identified with the
mixture pressure.

To this end we start by noting that, by using the representation (4.10) for the pressure, one
readily finds

µv

a
∇
[
qα1 +

( r
a

)3
qα−2

]
r=0

=
∫

|r|=a

dSαr p(y
α + r)n = v

[∇p(yα + r)
]
r=0 , (8.6)
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2µv

5a
∇∇

[
qα2 +

( r
a

)5
qα−3

]
r=0

=
∫

|r|=a

dSαr (nn − 1
3 I)p(yα + r)

= 1
5va

[∇∇p(yα + r)
]
r=0 .

(8.7)

If we further define the mean pressure on the surface of the α particle by

pα
e = 1

4πa2

∫
|r|=a

dSαr p(y
α + r) , (8.8)

and use the results (5.18) to (5.20) for Sl , we can rewrite the first few terms of (8.4) as

pm = βL〈p〉+
(
1 + a2

10
∇2

)
(nvpe) − a2

5
∇ · (nv∇p

)+ a4

14
∇∇ : (nv∇∇p

)+ O
( a
L

)3
. (8.9)

This expression coincides with the definition of mixture pressure proposed in [20], where it
was written in the following equivalent form:

pm = βL〈p〉 +
(

1 + a2

10
∇2

)(
nv

4πa2

∫
|r|=a

dSrp

)
+ a3

5
∇ ·

(
n

∫
|r|=a

dSr(−n)p

)

+a3

14
∇∇ :

[
n

∫
|r|=a

dSr

(
nn − 1

3
I
)
p

]
+ O

( a
L

)3
.

(8.10)

This expression was derived by identifying the component of the average stress in the suspen-
sion having the same transformation property as the pressure of an incompressible fluid upon
the gauge transformation p → p+ψ , with ψ a generic deterministic harmonic function. With
the sole assumption of incompressibility, the calculation was general for arbitrary Reynolds
numbers and rheological properties of the suspending phase (also non-Newtonian), but was
based on a perturbation expansion of the averaged equations, which explains the presence of
the error term in (a/L). Thus the suggestion put forward in [20] that (8.10) is to be identified
with the mixture pressure is supported by the present direct derivation.

9. Discussion: the mixture pressure

The proper definition of the mixture pressure in an incompressible suspension encounters
some conceptual difficulties as repeatedly noted in the literature (see, e.g., [31–35]). For exam-
ple, consider a disperse two-phase flow consisting of fluid spheres suspended in a continuous
phase. The obvious choice for a quantity to be identified with the average mixture pressure
would be the weighted sum of the pressures in the two phases:

pm = βL〈p〉 + βD〈pD〉 , (9.1)

with 〈pD〉 the phase ensemble pressure in the disperse phase. Indeed, this expression would
result from the application of most formal averaging methods. But let the disperse phase
become more and more viscous (e.g., by decreasing the temperature). As long as it remained
a fluid – however viscous – its internal pressure pD would be well defined and this definition
of average pressure would be meaningful. However, when the viscosity is large enough, the
behavior of the drops would be indistinguishable from that of rigid particles and yet, although
the average flow would be exactly the same in the two cases, the concept of ‘pressure’ inside
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a rigid particle would be devoid of physical meaning. A similar paradox arises on considering
the averaged momentum equation for the disperse phase: as long as this phase consists of a
fluid, most averaging methods would lead to a term involving the pressure gradient of the
disperse phase but, if the disperse phase were to become more and more viscous, one would
encounter the same difficulty as before.

For these reasons, several authors avoid the introduction of a disperse-phase pressure and
replace it by an ‘interfacial pressure’, related to the mean continuous-phase pressure on the
surface of the particles (see, e.g., [36–39]). In the present case of spherical particles this inter-
facial pressure is identical with pe, the particle average of the mean surface pressure defined in
(8.8). In these analyses the pressure term in the continuous-phase average momentum equation
is written as (see, e.g., [37, pp. 132–135], [23]):

βL∇〈p〉 + (pe − 〈p〉)∇βD . (9.2)

To see how this procedure relates to the present definition of mean mixture pressure, let
us rewrite the expression (8.4) or (8.10) for pm for the special case of a spatially uniform
suspension, for which nv = βD (see Appendix B):

pm = βL〈p〉 + βD

(
1

4πa2

∫
|r|=a

dSrp

)
. (9.3)

Upon comparing with (9.1) and setting 〈pD〉 = pe, we obtain a well-defined entity even when
the disperse phase consists of rigid particles. This identification is supported by the analysis
of [33] for a uniform suspension of slightly elastic particles which explicitly shows that the
isotropic part of the disperse-phase contribution to the stress tensor (which is to be identified
with 〈pD〉) is precisely equal to pe. Furthermore, upon taking the gradient of (9.3), we have

∇pm = βL∇〈p〉 + (pe − 〈p〉)∇βD + βD∇pe . (9.4)

The first two terms in the right-hand side are the same as those in (9.2); that the last term is
necessary for consistency was shown in [31] on the basis of a less rigorous argument than that
leading to the more precise result (8.4).

The above considerations ignore the differentiated terms in (8.4). The use of (9.3) in place
of (8.4) is similar to approximating βD by nv and 〈uD〉 by w. The omitted terms are corrections
of progressively higher order in the ratio a/L of the particle radius to the macroscopic length
L and may therefore be small in many cases. On the other hand, near a sedimenting front or
at the interface of a bubble in a fluidized bed the local length scale is not necessarily small
compared with the particle radius and these terms would be important, in particular providing
a regularization of the small wavelengths.

10. Discussion: the viscous stress

From the previous results it is also possible to derive rather directly an expression for the vis-
cous stress in the mixture. While this quantity has been well analyzed in the spatially uniform
case (see, e.g., [40]), no exact results are available in the presence of spatial non-uniformities.

Upon introducing the continuous-phase stress σ = −pI + 2µe, in which e is the rate of
deformation tensor, and ignoring for the present purposes the external force on the continuous
phase,5 the Stokes flow equation (4.8) can be averaged and rearranged in the form

5If the external force is conservative, its potential can simply be absorbed in the pressure and accounted for
in this way, as is well known.
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∇ · [−βL〈p〉I + µ
(∇um + (∇um)

T
)] = [∇ · (βL〈σ 〉) − βL〈∇ · σ 〉] , (10.1)

in which the result βL〈σ 〉 = −βL〈p〉I + µ
(∇um + (∇um)

T
)

exactly valid for rigid particles
has been used [41]. Since, from (8.3), the mixture velocity is incompressible, the previous
relation may be rewritten as

−∇pm + µ∇2um = ∇ (βL〈p〉 − pm) + [∇ · (βL〈σ 〉) − βL〈∇ · σ 〉] . (10.2)

If it were possible to describe the suspension simply by means of a mixture pressure and mix-
ture velocity, the left-hand side would vanish and, together with the continuity equation (8.3),
this would constitute a homogeneous-model formulation of the flow problem. The right-hand
side then represents the effect of the discrete nature of the system, which must be representable
in terms of a distributed body force and the divergence of a suitable ‘particle’ stress. Since we
have at our disposal exact results for the quantities in the left-hand side, we can explicitly
calculate these quantities.

By substituting (8.10) for the mixture pressure and (8.2) for the mixture velocity, we easily
find the following result:

−∇pm + µ∇2um = −S1(a
2∇2)

(
nF
)

− ∇ · S − ∇ × [
Uχ − ∇ × (

Uφ + Uq
)]

, (10.3)

where we have used the fact that ([30, p. 88])

Fα = 4πµ
[∇ (r3qα−2

)]
r=a

, (10.4)

and

S = 4

3
πµ

∞∑
/=2

(−1)/+1

/! (2/ + 1)S/(a
2∇2)∇(/−2) ·

(
n
[∇(/)

(
r2/+1q−/−1

)]
r=a

)
, (10.5)

Uφ = 4

3
πµ

∞∑
/=1

(−1)/+1

/! (2/ + 1)(2/ + 3)S/+1(a
2∇2)∇(/−1)

·
(
n
[∇(/)

(
r2/+1φ∗

−/−1

)]
r=a

)
,

(10.6)

Uq = 4

3
πµa2

∞∑
/=1

(−1)/+1

/! S/+1(a
2∇2)∇(/−1) ·

(
n
[∇(/)

(
r2/+1q−/−1

)∣∣
r=a

)
, (10.7)

Uχ = 4

3
πµ

∞∑
/=1

(−1)/+1

(/− 1)! (2/ + 1)S/(a
2∇2)∇(/−1) ·

(
n
[∇(/)

(
r2/+1χ−/−1

)]
r=a

)
. (10.8)

The term S is a symmetric second-order tensor and, since r2/+1q−/−1 is harmonic, it is
traceless. For a homogeneous suspension, all terms with / higher than 2 vanish and one is left
with

Sij = − 2
3πµ

[
∂i∂j

(
r5q−3

)]
r=a

, (10.9)

which can readily be shown to equal the average of the stresslets sαij

sαij =
∫
r=a

dSα
[

1
2

(
σikxj + σjkxi

)− 1
3δij σ/kx/

]
nk , (10.10)
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acting on the particles (see, e.g., [30] p. 88). Thus, in the case of a spatially uniform suspen-
sion, the result (10.9) reduces to that given by Batchelor [40] and, in particular, leads to the
Einstein viscosity correction in the dilute limit.

The last group of terms in (10.3) is the antisymmetric part of the stress. For a uniform
suspension Uχ reduces to the / = 1 contribution,

Uχ = 4πµn
[∇ (r3χ−2

)]
r=a

= − 1
2nT , (10.11)

where Tα is the viscous torque acting on the α-th particle; for inertialess motion, this term
vanishes unless the particles are subjected to an external couple. In this latter case, the present

result shows that the external couple is equivalent to a force − 1
2∇ ×

(
nT
)

as observed by

Batchelor [40] and Brenner [3, 4] and also found in [41] by a different method.
In the uniform case, all the contributions to the the terms Uφ and Uq except the first one

vanish as well and one is left with

Uφ + Uq = 4

15
πµn

[∇ (r3(15φ∗
−2 + a2q−2

)
)
]
r=a

. (10.12)

From (4.18) and (10.4) this expression may equivalently be rewritten in terms of φ1 and F.
Furthermore, in the representation (4.11) of the velocity field, the terms with n ≥ 0 represent
the field ‘incident’ on the particle, while those with n < 0 are the disturbance induced by the
particle. If the incident field is evaluated at the particle center r = 0 (i.e., x = yα), the only
surviving term is ∇φ1 and, with this remark, the previous expression becomes:

Uφ + Uq = 4
5πµa

3n
[
uinc(yα) − w

]+ 1
5a

2nF . (10.13)

For clarity it is worth pointing out that, in a truly uniform suspension, all derivatives except
the pressure gradient vanish and, in particular, there is no contribution from viscous stresses.
The proper way in which terms like S as approximated by (10.9) and Uχ as approximated
by (10.11) should be interpreted is thus as embodying the leading-order contributions in the
spatial gradients. The term ∇×∇×(Uφ +Uq) is then clearly one order smaller and, similarly,
all higher-order terms in the definitions (10.5) to (10.8) are corrections of successively higher
order in a/L. A consequence of this argument is that, in general, a small non-zero antisym-
metric stress exists even in the absence of external couples acting on the particles. While of
order (a/L)2, this term is not necessarily negligible being, for instance, of the same order of
magnitude as the Faxèn contribution to the particle force.

In order to establish a connection with earlier results [41], we return to (10.13) and use the
hydrodynamic force on the particle

−Fα = 6πµa
[
uinc(yα) − wα + 1

6a
2∇2uinc(yα)

]
, (10.14)

to re-express F finding

Uφ + Uq = 2
5πµa

3n
[
w − uinc(yα)

]− 1
5πµa

5n∇2uinc(yα) . (10.15)

For simplicity let us retain only terms of order a2/L2 in the following discussion. Then we
find, from (5.19) and (10.14),

S1(nF) − ∇ × ∇ × (
Uφ + Uq

) � nF + ∇2
[
πµa3n

(
w − uinc(yα)

)]
−∇∇ ·

[
2
5πµa

3n
(
w − uinc(yα)

)] (10.16)
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The presence of the second term in the right-hand side was first noted in [41] in the dilute
limit.

It is interesting to consider further the force term in (10.3). It is shown in Appendix B that

S1(a
2∇2)

(
nF
)

= 1

v

∫
|r|≤a

d3r n(x + r) F(x + r) . (10.17)

Again in the special case of a uniform suspension this term simply reduces to nF; in the
general case, it represents the force per unit volume acting on the mixture due to the external
force on the particles.6 The difference between S1(nF) and nF is similar to that between
βD = S1(nv) and nv mentioned earlier. It will also be noted that, in (10.6) and (10.7), the
/ = 1 terms are all preceded by the operator S1 which, just as in (10.17), has the effect of
averaging the corresponding quantities over a volume v.

In summary, the previous results show that the momentum balance in the mixture may be
expressed as

−∇pm + ∇ · � + 1

v

∫
|r|≤a

d3rn(x + r)F(x + r) = 0 , (10.18)

where the total viscous stress is given by

� = µ
[∇um + (∇um)

T
]+ S + ε · [Uχ − ∇ × (Uφ + Uq)

]
(10.19)

in which (ε)ijk = εijk is the alternating tensor.
The partition between symmetric and antisymmetric parts implicitly given in this equation

is not unique; for example, upon observing that

∇ × ∇ × Uφ = ∇ · [(∇ · Uφ)I − ∇Uφ
]
, (10.20)

the divergence of (10.19) may equivalently be expressed as the divergence of

�′ = µ
[∇um + (∇um)

T
]+ S

+ 1
2

[
∇(Uφ + Uq) + (∇(Uφ + Uq)

)T ]− [∇ · (Uφ + Uq)
]

I

+ε · [Uχ − 1
2∇ × (Uφ + Uq)

]
.

(10.21)

The difference between (10.19) and (10.21) is

�′ − � = 1
2

[
∇(Uφ + Uq) + (∇(Uφ + Uq)

)T ]
− [∇ · (Uφ + Uq)

]
I + 1

2ε · [∇ × (Uφ + Uq)
]
,

(10.22)

which is readily seen to be divergencelss. In the form (10.19) the symmetric part of the stress
acquires a new contribution (first term in the second line of 10.21) and an isotropic part,
and the antisymmetric part (last line of 10.21) is also modified. It is this latter form that was
proposed in our recent paper [20] by a different argument. With the hindsight afforded by the
present results, the form (10.19) seems simpler and more natural.

6Note that the integral of this term over the cell precisely cancels the integral in Equation (5.23) so that the
total net force on the system vanishes.
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11. Conclusions

In the present paper we have calculated the ensemble averages of fluid pressure and velocity
fields in a suspension constructed by the infinite repetition of a fundamental cell containing N

randomly placed equal rigid spheres. This arrangement forms the basis for a common method
for the direct numerical simulation of unbounded suspensions (see, e.g., [5, 8, 9, 16, 17, 27]).
The final expressions (cf., Equations 10.5–10.8) are in terms of summations of multipole
contributions in which progressively higher-order terms introduce corresponding higher-order
spatial derivatives, which suggests an interpretation as an expansion in powers of a/L, where
L is a macroscopic length scale.

The results are of interest in themselves and may be applied to other physical problems
in which similar averages of quantities defined by the Laplace or biharmonic equation are
involved. In this paper, the focus has been on the averaged description of a suspension: we
have used the results to define the proper quantity to be identified with the mixture pressure
and we have deduced a computable expression for the mixture stress. As shown in [16–18],
one can use this expression to systematically derive constitutive relations for the averaged
equations. We have also shown that the results found here, while consistent with those ob-
tained by different methods in earlier work [20, 41], permit to simplify them considerably thus
reducing the complexity of finding closure relations for averaged equations. In addition, the
earlier method of [20] is applicable also to non-Newtonian flow and flow at finite Reynolds
numbers and therefore, with the insight derived here, it will be possible to derive simpler
results for these important cases as well.

In closing we note a connection between the results presented in this paper and integrals
of the functions introduced by Hasimoto [28]. Hasimoto’s function S1 satisfies Equation (4.4)
given before. Any harmonic function defined in the periodic cell and regular outside the N

spheres can be represented as a superposition of S1 and its derivatives (see, e.g., [15]):

7 =
N∑
α=1

HαS1(x − yα) , (11.1)

where H is a suitable differential operator (see [15] and [8] for details). By means of the
formulae given in the references, the expansion (11.1) can be expressed in terms of spherical
harmonics in the neighborhood of each particle. The results of Section 5 can then be used to
calculate the volume integrals of 7 over the domain L defined in (2.9). Without getting into
details, it is clear that the results given in this paper can be used to evaluate such integrals.

By similar arguments one can use the results of Appendix C to calculate integrals of S2,
the second function defined by Hasimoto, and its derivatives. The relation between S1 and S2

is ∇2S2 = S1. It is sufficient to note that a biharmonic function may be expanded as

8 =
N∑
α=1

[
GαS1(x − yα) + F αS2(x − yα)

]
, (11.2)

where G, F are differential operators similar in structure to H .
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Appendix A

We collect here some of the details of the calculation.
In order to prove (5.10) we note that (k · ∇)n is just kn times the n-th order derivative in

the direction z of the polar axis. From the normalization Pn(1) = 1 it is obvious that

rnPn(cos θ) = zn + · · · , (A.1)

where the omitted terms involve powers of z lower than n since rnPn is a homogeneous
polynomial of degree n in x, y, z. Similarly, for m > 0, rnPm

n cos(mϕ) and rnPm
n sin(mϕ)

are homogeneous polynomials in x, y, z containing z to a power less than n (see, e.g., [42,
p. 137]). Therefore

(k · ∇)n
[
rnPn(cos θ)

] = knn! , (A.2)

(where k = |k|) from which (5.10) immediately follows; the analogous relation (5.11) follows
by a similar argument upon noting that, e.g., r2n+1q−n−1 is a solid harmonic of order n.

The following results valid for any solid harmonic φn of degree n regular at the origin can
also be proven∫

r=a

dS exp(ik · r)∇φn = 4πan+1

(n − 1)! i
n−1jn−1(ka) (m · ∇)n−1 ∇φn , (A.3)

∫
r=a

dS exp(ik · r)rφn = 3v

[
an

n! m (m · ∇)n in+1jn+1(ka)φn

+ in−1an

(n − 1)! (m · ∇)n in−1 jn(ka)

ka
∇φn

]
,

(A.4)

∫
r=a

dS exp(ik · r) (∇φn) × r = 4πan+2

(n − 1)! i
njn(ka)m × [

(m · ∇)n−1 ∇φn
]
, (A.5)

where m = k/k. These expressions are useful to evaluate the surface integrals that arise in
the calculation of the velocity.

A more detailed justification of the step leading from (5.12) to (5.23) or, analogously, from
(6.5) to (6.13) is as follows. For brevity, define the following /-th order tensors pertaining to
particle α:

Aα
/ = −v

(−a2)/

/! ∇(/)

[
q/ +

( r
a

)2/+1
q−/−1

]
r=0

, (A.6)

Bα
/ = v

(−a2)/

/! (2/ + 1)∇(/)

[( r
a

)2/+1
q−/−1

]
r=0

, (A.7)

where the gradient is with respect to r. We may then write
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exp(−ik · x)Lα
k =

[ ∞∑
/=0

S/+1(a
2∇2)∇(/) · Aα

/ + (−a2∇2)−1S/(a
2∇2)∇(/) · Bα

/

]

exp(−ik · x) ,

(A.8)

where the differential operators now act on the variable x.
According to the definitions of Sections 2 and 3, the Fourier expansion (2.5) for q may be

written as

βL(x)〈q〉(x)−q0 =
∑
k�=0

{
1

V

∫
d3x′ exp(ik · x′)

[
1

N !
∫

dCNP (N)

N∑
α=1

δ(x′−yα)Lα
k

]}
exp(−ik · x),

(A.9)

which, from (A.8) and using the definition (3.4) of particle averages, on the basis of which

n(x′)A/(x′) = 1

N !
∫

dCNP (N)

N∑
α=1

δ(x′ − yα)Aα
/ , (A.10)

n(x′)B/(x′) = 1

N !
∫

dCNP (N)

N∑
α=1

δ(x′ − yα)Bα
/ , (A.11)

becomes

βL(x)〈q〉(x) − q0 =
∞∑
/=0

{
S/+1(a

2∇2)

∇(/) ·

∑

k�=0

(
1

V

∫
d3x′ exp(ik · x′)n(x′)A/(x′)

)
exp(−ik · x)




+ (−a2∇2)−1S/(a
2∇2)

∇(/) ·

∑

k�=0

(
1

V

∫
d3x′ exp(ik · x′)n(x′)B/(x′)

) exp(−ik · x)


 ,

(A.12)

But, clearly, the quantity in brackets are the Fourier expansions of n(x)A/(x) and n(x)B/(x)
respectively, except for the term corresponding to k = 0. Because of the differential operator
∇(/), the contribution of this zero-mode is only important for / = 0. Since, as noted before,
q−1 = 0, Bα

0 = 0 while, from (3.7), we have

(nA0)0 = 1

V

∫
d3x′n(x′)A0(x′) = 1

V

∫
d3x′ 1

N !
∫

dCNP (N)

[
N∑
α=1

δ(x′ − yα)
(−vqα0

)]
(A.13)

which is identical to the contribution of Q0. Hence, writing the / = 0 term explicitly, (A.12)
becomes

βL(x)〈q〉(x) = −S1(nvq0) +
∞∑
/=1

{
S/+1∇(/) · [n(x)A/(x)

]
+ (−a2∇2)−1S/∇(/) · [n(x)B/(x)

]} (A.14)
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which is (5.22).

Appendix B. the operator S1

Consider, in the periodic setting of this paper, a generic quantity given by

T =
∫

|r|≤a
d3rn(x + r)f (x + r) , (B.1)

where f is such that the integral is well defined. Upon expanding T in a Fourier series we
have

T =
∑

k

(T )k exp (−ik · x) , (B.2)

where

(T )k = 1

V

∫
d3x exp (ik · x) T

= 1

V

∫
|r|≤a

d3r

∫
d3x exp (ik · x) n(x + r)f (x + r)

= 1

V

∫
|r|≤a

d3r exp (−ik · r)
∫

d3z exp (ik · z) n(z)f (z)

= (nf )k

∫
|r|≤a

d3r exp (−ik · r) .

(B.3)

But∫
|r|≤a

d3r exp (−ik · r) = vS1(−k2a2) . (B.4)

Upon substituting into (B.2) we have

T =
∑

k

vS1(−k2a2) exp (−ik · x) (nf )k = vS1(a
2∇2)

∑
k

exp (−ik · x) (nf )k

= S1(a
2∇2)(nvf ) .

(B.5)

With f = 1, this result proves the relation (7.3) between βD and nv while, with f = F, we
recover (10.17).

A similar argument enables us to prove the relation (5.23). Here, from the definition (2.4)
of phase average, we have

βL

〈
N∑
α=1

Fα

〉
= 1

N !
∫

dCNP (N)(1 − χ)

N∑
α=1

Fα . (B.6)

Again we expand in a Fourier series the coefficients of which are found to be

1

V

∫
d3x exp (ik · x)

1

N !
∫

dCNP (N)(1 − χ)

N∑
α=1

Fα

=
[

1

N !
∫

dCNP (N)

N∑
α=1

Fα

][
1

V

∫
d3x exp (ik · x) (1 − χ)

]
.

(B.7)
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But

1

N !
∫

dCNP (N)

N∑
α=1

Fα = 1

N !
∫

dCNP (N)

∫
d3x′

N∑
α=1

δ(x′ − yα)Fα =
∫

d3x′n(x′)F(x′) (B.8)

while the other factor in (B.7) is just the Fourier coefficient of βL. The Fourier series can then
be summed to give (5.23).

Appendix C. Biharmonic functions

Since the components of the liquid velocity satisfy the biharmonic equation, the calculation of
Section 6 could also have been undertaken by developing first general results for biharmonic
functions similarly to what was done in Section 5. It turns out that, in the particular case
considered here, the route followed in Section 6 is somewhat more convenient. However, for
completeness, we now present general results for functions 8 that are biharmonic outside the
spheres centered at yα .

Just as in (5.2) we rewrite the integral in question identically as

8k = − 1

k2

∫
L

dr
[∇2 exp(ik · r)

]
8(r) . (C.1)

Two applications of Green’s theorem leave

8k = 1

k4

∫
A

dA
[(∇28(r)

)∇ exp(ik · r) − exp(ik · r)∇ (∇28(r)
)] · n

− 1

k2

∫
A

dA
[
8(r)∇ exp(ik · r) − exp(ik · r)∇8(r)

] · n .

(C.2)

The integral over the cell surface vanishes by periodicity as before, so that

8k = − 1

k4

N∑
α=1

exp(ik · yα)
∫
r=a

dSαn · [(∇28(yα + r)
)∇ exp(ik · r)

− exp(ik · r)∇ (∇28(yα + r)
)]

+ 1

k2

N∑
α=1

exp(ik · yα)
∫
r=a

dSαn · [8(yα + r)∇ exp(ik · r)

− exp(ik · r)∇8(yα + r)
]
.

(C.3)

It is easy to show that, since 8 is biharmonic, it must have a structure of the type

8(rα + r) =
∞∑

n=−∞

[
r2

4n + 6
ψα
n + ψ̃α

n

]
, (C.4)

where ψα
n and ψ̃α

n are both n-th order spherical harmonics. Again using (5.6), we can then
show that

8k = 1

k2

N∑
α=1

exp(ik · yα)
∞∑

n=−∞

1

a

∫
r=a

dSα(ika cos θ − n) exp(ikζa)

(
ψ̃α
n − 1

k2
ψα
n

)

+ 1

k2

N∑
α=1

exp(ik · yα)
∞∑

n=−∞

a

4n + 6

[
k
∂

∂k
− (n + 2)

] ∫
r=a

dSαψα
n exp(ikζa) .

(C.5)
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Again using the expansion (5.8), we rewrite this relation as

8k = 3v

ka

N∑
α=1

exp(ik · rα)

[
−

∞∑
n=0

injn+1(ka)

(
ψ̃rα
n0 − 1

k2
ψrα
n0

)

+
∞∑
n=1

injn−1(ka)

(
ψ̃α
n0 − 1

k2
ψα
n0

)]

+3va

2k

N∑
α=1

exp(ik · rα)

[ ∞∑
n=0

in

2n + 3
ψrα
n0

(
jn−1(ka) − 2n + 3

ka
jn(ka)

)

+
∞∑
n=1

in

2n + 3
ψα
n0

(
jn−1(ka) − 2

ka
jn(ka)

)]
.

(C.6)

For the homogeneous integrals we define 8∗ such that

∇28∗ = 8 , (C.7)

apply Green’s theorem, and drop the contribution of the cell surface as before to find:

80 = −
N∑
α=1

∫
r=a

dSαn · ∇8∗(rα + r) . (C.8)

By using the representation (C.4) of 8 and the relation

∇2(r4ψα
n ) = 4(2n + 5)r2ψα

n , (C.9)

and proceeding as for the derivation of (5.14), we find

8∗ =
∞∑

n=−∞

r2

4n + 6

[
r2

8n + 20
ψα
n + ψ̃α

n

]
, (C.10)

plus a harmonic function which, as before, can be taken to be zero. With this formula, we
obtain

80 = −
N∑
α=1

∫
r=a

dSα
∞∑

n=−∞

1

4n + 6

[
n+ 4

8n + 20
r3ψα

n + (n+ 2)rψ̃α
n

]
, (C.11)

which, after integration, becomes

80 = −v

N∑
α=1

(
a2

10
ψα

0 + ψ̃α
0 + 3a2

8
ψα

−1 + 3

2
ψ̃α

−1

)
. (C.12)
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